installation

``` # ⚙️ Installation Guide - Aviation Safety AI Framework ## System Requirements ### Minimum Requirements ``` Operating Systems: •Linux: Ubuntu 20.04+, CentOS 8+, RHEL 8+ •Windows: Windows 10/11, Windows Server 2019+ •macOS: macOS 11.0+ (Big Sur) •RTOS: QNX 7.0+, VxWorks 7+ Hardware: •CPU: x86-64 or ARMv8-A (4+ cores) •RAM: 8 GB minimum (16 GB recommended) •Storage: 10 GB available space •GPU: Optional (NVIDIA CUDA 11.0+ for acceleration) Python Environment: •Python: 3.9, 3.10, 3.11 (3.12 experimental) •pip: 21.0+ •virtualenv: 20.0+ (recommended) ``` ### Aircraft Deployment Requirements ``` Certified Hardware: •Avionics Computer: DO-254 Level B compliant •Memory: 4 GB ECC RAM minimum •Storage: 64 GB SSD with wear leveling •Power: 28V DC, 20W typical consumption Certified Software: •OS: ARINC 653 compliant RTOS •Middleware: DDS or equivalent •Runtime: Python 3.9 (DO-178C qualified) •Libraries: All with certification evidence ``` ## Quick Installation ### Method 1: pip Installation (Recommended) ```bash # Create virtual environment python -m venv aviation_env source aviation_env/bin/activate # Linux/macOS # aviation_env\Scripts\activate # Windows # Install core package pip install aviation-safety-ai # Install with optional dependencies pip install aviation-safety-ai[full] # Includes visualization, GPU support # Verify installation python -c "import aviation_safety; print(aviation_safety.__version__)" ``` Method 2: Docker Installation ```bash # Pull Docker image docker pull emeraldcompass/aviation-safety:latest # Run container with data volume docker run -p 8080:8080 \ -v /path/to/flight_data:/data \ -v /path/to/models:/models \ emeraldcompass/aviation-safety:latest # Run with GPU support (NVIDIA) docker run --gpus all \ -p 8080:8080 \ emeraldcompass/aviation-safety:gpu-latest ``` Method 3: Source Installation ```bash # Clone repository git clone https://github.com/emerladcompass/Aviation.git cd Aviation # Install dependencies pip install -r requirements.txt # Install in development mode pip install -e . # Run tests python -m pytest tests/ ``` Detailed Installation Step 1: Environment Setup ```bash # Create dedicated environment conda create -n aviation python=3.9 conda activate aviation # Or using venv python3.9 -m venv ~/aviation source ~/aviation/bin/activate ``` Step 2: Dependency Installation ```bash # Base dependencies pip install numpy>=1.21.0 pip install scipy>=1.7.0 pip install pandas>=1.3.0 pip install scikit-learn>=1.0.0 # Machine learning pip install torch>=1.10.0 pip install tensorflow>=2.7.0 # Optional pip install xgboost>=1.5.0 # Scientific computing pip install pysindy>=1.7.0 # Sparse Identification of Nonlinear Dynamics pip install nolds>=0.5.0 # Nonlinear dynamics and Lyapunov exponents pip install pyts>=0.12.0 # Time series analysis # Aviation-specific pip install pyavia>=0.2.0 # Aviation data handling pip install aeropy>=1.1.0 # Aerodynamics calculations # Visualization pip install matplotlib>=3.5.0 pip install plotly>=5.5.0 pip install seaborn>=0.11.0 ``` Step 3: Framework Installation ```bash # Option A: From PyPI (stable) pip install emerald-compass-aviation # Option B: From GitHub (development) pip install git+https://github.com/emerladcompass/Aviation.git # Option C: Local development git clone https://github.com/emerladcompass/Aviation.git cd Aviation pip install -e ".[dev,test,docs]" ``` Step 4: Verification ```bash # Test basic functionality python -c " import aviation_safety as av print(f'Version: {av.__version__}') # Test data loading from aviation_safety.data import FlightDataLoader loader = FlightDataLoader() print('Data loader initialized') # Test modeling from aviation_safety.modeling import VanDerPolModel model = VanDerPolModel(mu=0.47, omega=1.23) print('Model initialized successfully') " # Run test suite pytest tests/ -v ``` Platform-Specific Instructions Linux (Ubuntu/Debian) ```bash # System dependencies sudo apt update sudo apt install -y \ python3-dev \ python3-pip \ build-essential \ libhdf5-dev \ libatlas-base-dev \ ffmpeg \ libsm6 \ libxext6 # For GPU support (NVIDIA) sudo apt install -y nvidia-cuda-toolkit pip install nvidia-cudnn-cu11 # Install framework pip install aviation-safety-ai[gpu] ``` Windows ```powershell # Install Python 3.9 from Microsoft Store or python.org # Enable "Add Python to PATH" during installation # Install Visual C++ Build Tools # Download from: https://visualstudio.microsoft.com/visual-cpp-build-tools/ # Install using PowerShell python -m venv aviation_env .\aviation_env\Scripts\Activate.ps1 pip install aviation-safety-ai # For GPU support pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 pip install aviation-safety-ai[gpu] ``` macOS ```bash # Install Homebrew if not installed /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)" # Install system dependencies brew install python@3.9 brew install hdf5 brew install ffmpeg # For Apple Silicon (M1/M2/M3) # Install miniforge for ARM support brew install miniforge conda init "$(basename "${SHELL}")" conda create -n aviation python=3.9 conda activate aviation # Install framework pip install aviation-safety-ai ``` Aircraft Deployment DO-178C Certified Installation ```bash # 1. Prepare certified environment cd /certified/avionics tar -xzf aviation-safety-certified-1.0.0.tar.gz # 2. Validate checksums sha256sum -c checksums.txt # 3. Install certified Python ./install_certified_python.sh # 4. Install framework ./install_aviation_framework.sh --certification-level=B # 5. Run certification tests ./run_certification_tests.sh # 6. Generate certification evidence ./generate_evidence_package.sh ``` Docker for Avionics (Containerized) ```dockerfile # Dockerfile.avionics FROM emeraldcompass/aviation-safety:avionics-latest # Set up ARINC 653 environment ENV ARINC653_CONFIG=/config/partition.xml ENV TIME_PARTITION=A # Copy application COPY app/ /app/ # Set entrypoint ENTRYPOINT ["python", "/app/aviation_safety_rt.py"] ``` Development Setup Full Development Environment ```bash # Clone with submodules git clone --recursive https://github.com/emerladcompass/Aviation.git cd Aviation # Install development dependencies pip install -r requirements-dev.txt pip install -r requirements-test.txt pip install -r requirements-docs.txt # Set up pre-commit hooks pre-commit install # Install in development mode pip install -e ".[dev]" # Set up testing database python scripts/setup_test_db.py # Launch Jupyter for development jupyter lab notebooks/ ``` IDE Configuration VS Code Configuration (.vscode/settings.json): ```json { "python.defaultInterpreterPath": "./aviation_env/bin/python", "python.linting.enabled": true, "python.linting.pylintEnabled": true, "python.formatting.provider": "black", "python.testing.pytestEnabled": true, "python.testing.unittestEnabled": false, "[python]": { "editor.formatOnSave": true, "editor.codeActionsOnSave": { "source.organizeImports": true } } } ``` PyCharm Configuration: 1. Create new project from existing sources 2. Set interpreter to aviation_env/bin/python 3. Enable pytest as test runner 4. Configure run configurations for examples Configuration Basic Configuration File (config.yaml) ```yaml # config.yaml aviation_safety: # Model settings model: type: "hybrid" physics_weight: 0.6 ai_weight: 0.4 confidence_threshold: 0.8 # Data settings data: sampling_rate: 8 parameters: 127 normalize: true impute_missing: true # Prediction settings prediction: horizon: 300 update_interval: 1.0 buffer_size: 1000 # Safety settings safety: lambda_thresholds: stable: 0.01 ccz_lower: 0.01 ccz_upper: 0.5 chaos: 0.5 alert_levels: info: 0.1 warning: 0.3 critical: 0.5 # Logging settings logging: level: "INFO" file: "/var/log/aviation_safety.log" rotation: "daily" retention: 30 ``` Environment Variables ```bash # Set in shell or .env file export AVIATION_SAFETY_MODEL_PATH="/models/hybrid_v1.pkl" export AVIATION_SAFETY_DATA_PATH="/data/flights" export AVIATION_SAFETY_LOG_LEVEL="INFO" export AVIATION_SAFETY_CERTIFICATION_LEVEL="B" export AVIATION_SAFETY_USE_GPU="true" export CUDA_VISIBLE_DEVICES="0" ``` Integration Examples Integration with Flight Simulators ```python # X-Plane integration import aviation_safety as av from aviation_safety.integration.xplane import XPlaneInterface # Connect to X-Plane xplane = XPlaneInterface(host='127.0.0.1', port=49000) # Create safety monitor monitor = av.RealTimeMonitor( model_path='models/hybrid_model.pkl', update_rate=8.0 # Hz ) # Main loop while True: # Get flight data from X-Plane data = xplane.get_flight_data() # Analyze safety analysis = monitor.analyze(data) # Provide feedback if analysis['risk_level'] == 'HIGH': xplane.show_alert("Simplify cockpit interface") time.sleep(0.125) # 8 Hz ``` Integration with Existing Systems ```python # Integration with airline operations from aviation_safety import AviationSafetyAPI from aviation_safety.integration.acars import ACARSInterface class AirlineSafetySystem: def __init__(self): self.api = AviationSafetyAPI( certification_level='OPERATIONAL', airline_code='QFA' ) self.acars = ACARSInterface() def monitor_flight(self, flight_number): # Real-time monitoring while flight_active: # Get data from aircraft data = self.acars.get_flight_data(flight_number) # Analyze result = self.api.analyze_flight(data) # Send alerts if needed if result['requires_attention']: self.send_alert_to_crew(result) # Update ground operations self.update_operations_dashboard(result) ``` Maintenance and Updates Update Procedure ```bash # Check current version python -c "import aviation_safety; print(aviation_safety.__version__)" # Update via pip pip install --upgrade aviation-safety-ai # Update from source cd Aviation git pull origin main pip install --upgrade -e . # Verify update python -c "import aviation_safety; print(f'Updated to: {aviation_safety.__version__}')" ``` Backup and Recovery ```bash # Backup configuration tar -czf aviation_backup_$(date +%Y%m%d).tar.gz \ /etc/aviation_safety \ /var/lib/aviation_safety/models \ /var/log/aviation_safety # Restore from backup tar -xzf aviation_backup_20251228.tar.gz -C / systemctl restart aviation-safety ``` Uninstallation Complete Removal ```bash # Remove package pip uninstall aviation-safety-ai -y # Remove virtual environment deactivate # If activated rm -rf aviation_env # Remove configuration files (optional) sudo rm -rf /etc/aviation_safety sudo rm -rf /var/lib/aviation_safety # Remove Docker containers docker stop aviation-safety-container docker rm aviation-safety-container docker rmi emeraldcompass/aviation-safety:latest ``` Partial Removal ```bash # Remove only models rm -rf ~/.aviation_safety/models # Clear cache rm -rf ~/.cache/aviation_safety # Reset configuration aviation_safety reset --all ``` Support and Troubleshooting Getting Help ```bash # Check documentation aviation_safety --help aviation_safety docs --open # Run diagnostic aviation_safety diagnose # Check system compatibility aviation_safety check-system # Generate support report aviation_safety support-report ``` Common Issues and Solutions ``` Issue: ImportError: libcudart.so.11.0 Solution: Install CUDA 11.0 or use CPU version Issue: MemoryError with large datasets Solution: Use data streaming or increase swap Issue: Certification validation failed Solution: Check DO-178C compliance settings Issue: Real-time latency too high Solution: Optimize model or reduce parameters ``` Performance Tuning Optimization for Production ```bash # Compile models for performance aviation_safety compile-models --optimize=aggressive # Quantize for embedded deployment aviation_safety quantize --bits=8 --platform=armv8 # Generate deployment package aviation_safety package --target=avionics --certification=B ``` Monitoring Performance ```bash # Monitor in real-time aviation_safety monitor --metrics=all --interval=1 # Generate performance report aviation_safety benchmark --dataset=test_flights.csv # Profile CPU/GPU usage aviation_safety profile --duration=60 --output=profile.json ``` License and Compliance License Activation ```bash # For commercial use aviation_safety license activate --key=YOUR_LICENSE_KEY # Check license status aviation_safety license status # Update license aviation_safety license update --key=NEW_LICENSE_KEY ``` Compliance Reporting ```bash # Generate compliance report aviation_safety compliance report --standard=DO-178C # Export evidence for certification aviation_safety compliance export --format=pdf --output=certification_evidence.pdf ``` ---
← Back to Home